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Abstract

Objectives—The purpose of this study was to provide clinical evidence of the use of contrast-

enhanced sonography in detecting and quantifying changes in intraneural vascularity due to 

median mononeuropathy.

Methods—Five Macaca fascicularis monkeys were exposed to 20 weeks of repetitive work to 

increase their risk of developing median mononeuropathy. Contrast-enhanced sonograms were 

obtained in 30-second increments for 7 minutes while a contrast agent was being delivered. Data 

were collected immediately at the conclusion of the 20-week work exposure and then again during 

a recovery phase approximately 3 months after the completion of work. Quantitative analysis and 

trend graphs were used to analyze median nerve perfusion intensity. This study also compared the 

use of both manual counting of pixels and semiautomatic measurement using specialized software.

Results—Based on the average data, maximum intensity values were identified as the best 

indicators of nerve hyperemia. Paired t tests demonstrated significantly higher maximum 

intensities in the working stage for 4 of the 5 subjects (P < .01).

Conclusions—This study provides preliminary evidence that (1) in a controlled exposure 

model, a change in intraneural vascularity of the median nerve between working and recovery can 

be observed; (2) this vascular change can be measured using an objective technique that quantifies 

the intensity of vascularity; and (3) contrast-enhanced sonography may improve the ability to 

reliably capture and measure low-flow microvascularity.
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Mononeuropathy can be caused by trauma, compression, or infection of a peripheral nerve. 

In the case of the median nerve, mononeuropathy manifests itself with pain, pares-thesia, 

and numbness in the thumb and first two digits of the hand, and in advanced stages, it is 

clinically diagnosed as carpal tunnel syndrome.1 In acute stages of median mononeuropathy, 

an entrapped or compressed nerve responds by swelling at the next proximal node of 

Ranvier and dispensing Nissl substance.2 This process of repair results in an increase in 

metabolic activity and corresponding inflammation of that area of the peripheral nerve.

Sonographically, median mononeuropathy has been described as nerve swelling in the 

proximal portion of the carpal tunnel and flattening in the distal tunnel.3 This combination 

of swelling and compression has been described as a “notch sign” and is used to support an 

imaging diagnosis of median mononeuropathy.3,4 The grayscale sonographic pattern has 

been described as a uniformly hypoechoic pattern proximal to the site of injury, and 

disturbance in the microvasculature has been noted.5 This increase in vascularity represents 

a pathogenic repair process of the nerve and can be appreciated with color and power 

Doppler imaging.5

Although there are a plethora of human studies to support these sonographic diagnostic 

criteria,6-10 numerous gaps continue to exist. Since the median nerve is classified as a large 

peripheral nerve, evaluation of the pathophysiologic mechanism of acute repair of the nerve 

and associated intraneural vascular activity should be easy to document with high-resolution 

sonography. Unfortunately, varied results across numerous studies that image hyperemia 

within the nerve continue to highlight the difficulty in quantifying this Doppler measure. 

Additionally, most previous studies have been relegated to imaging median mononeuropathy 

in its chronic state, which may limit detection of changes due to the pathophysiologic 

mechanism of the acute injury.

To this end, we became interested in the use of contrast-enhanced sonographic techniques to 

document the metabolic activity and inflammation in an acutely injured median nerve. We 

hypothesized that amplifying the microvasculature would enhance the ability to detect and 

record increased metabolic activity. Additionally, we were interested in determining the 

ability of sonography to document the longitudinal development of the median 

mononeuropathy and associated intraneural vascular disturbance.

We report a study of 5 Macaca fascicularis that had a 20-week controlled exposure to a 

repetitive thumb and finger pinching task. Contrast-enhanced sonography was used to show 

intraneural vascularity associated with median mononeuropathy. A multi-incremental 

sampling set of images was retrospectively analyzed to identify markers of physiologic 

repair in the early development of this compressive disorder of the median nerve.

Materials and Methods

This study was designed to gather preclinical safety information and determine the utility of 

contrast-enhanced sonography as a means for amplifying median nerve vascularity. An 

abbreviated review of materials and methods specific to this study is presented; detailed 

methods have been previously reported as indicated below.
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Subjects

Five young adult female monkeys (M fascicularis) were trained to complete a repetitive 

pinching task with the left thumb and fingers.11 The subjects received 1 month of training 

and worked for 20 weeks, followed by a recovery period during which time no work was 

performed. The subjects were managed in accordance with the protocols approved by The 

Ohio State University’s Institutional Animal Care and Use Committee.

Equipment

A LOGIQ i ultrasound system (GE Healthcare, Milwaukee, WI) with a 12.0-MHz linear 

broadband transducer was used. The output power was reduced to 4% to preserve the 

contrast activity. Throughout the series of experiments, quality control was verified via 

weekly checks by imaging tissue-mimicking and flow phantoms.

Contrast Agent Dosing

Definity (Lantheus Medical Imaging, Billerica, MA) was used as the contrast agent for this 

study because it possesses the smallest microspheres available (1.1–1.3 μm, stability of <10 

minutes, and resonance at 4 MHz).12 These unique features of Definity made it ideal for this 

experimental application. The dosing protocol was developed in consultation with the 

manufacturer and with cardiac sonographers who had experience using the product for 

human studies. A nurse practitioner graduate student managed the preparation of the doses, 

designed to increase visualization of selective anatomic structures. The contrast agent was 

activated according to the instructions provided by the manufacturer and was vigorously 

agitated in the syringes immediately before injection.13 Each subject was sedated, and a 22-

gauge catheter was placed in a hind leg vein for direct injection. The cumulative dose of the 

contrast agent injections included 0.04 mL of Definity and 0.96 mL of saline delivered over 

4 minutes 15 seconds.

Contrast-Enhanced Sonogram Acquisition and Analysis

Contrast-enhanced sonography was used to collect images from the subjects after working 

for up to 20 weeks and during recovery after working had ceased for approximately 3 

months. The ultrasound transducer was placed and held stationary over the median nerve in 

the longitudinal plane at the wrist crease. A 7-minute power Doppler cine clip was obtained, 

beginning at the time of initial contrast agent injection. Power Doppler region of interest 

(ROI) dimensions were kept consistent across subjects to ensure standardization. For 

analysis, imaging samples were captured from each cine clip beginning at baseline (time 0) 

and at every 30-second increment for a total of 15 image samples.

Power Doppler pixels were manually counted on each of the incremental images for all 

subjects at both phases of the study according to the method of Klauser et al14 for counting 

power Doppler pixels with the ROI. A second semiautomatic measurement method used 

PixelFlux Scientific software (Chameleon Software GmbH, Münster, Germany) to 

objectively quantify vascularity within the median nerve (Figure 1). First, an ROI was 

carefully drawn outlining the median nerve in the longitudinal plane. After this step was 

completed, the software calculated the perfusion intensity of the power Doppler pixels 
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within the manually identified ROI surrounding the median nerve.15 The maximum intensity 

of power Doppler pixels within the ROI and an average intensity across all power Doppler 

pixels were identified for each of the 15 image samples for each subject at completion of 

work exposure and in the recovery phase.

Statistical Analysis

Manual pixel counts and semiautomatic intensity measurements were averaged across the 15 

incremental image samples for both the working and recovery phases. This process was 

done by subject to identify the measurement with the greatest potential for detection of 

differences in vascularity. Paired t tests were used to compare differences across the 15 time 

points between working and recovery phases for each subject. Trend graphs were created to 

illustrate differences between the two phases and determine potential longitudinal effects of 

the contrast for amplifying the measurement of vascularity surrounding each subject’s 

median nerve across 7 minutes from the time of injection. Significance of P < .05 in this 

small-cohort study was interpreted as a trend in the data requiring further investigation.

Results

Five subjects (S, U, W, X, and Y) were injected during the two study phases. All of the 

subjects maintained their original weight throughout the study, with the minimum overall 

weight for subject U, weighing 4.00 kg, and the maximum for subject S, weighting 5.70 kg. 

Manual grading and semiautomatic measurements were averaged across the 15 incremental 

time samples in each phase by subject (Table 1). Based on these average data, maximum 

intensity values were identified as the best indicators of hyperemia within the nerve tissue 

due to the objectivity of the measurement and having the largest distribution of the resulting 

data. Paired t tests were conducted to determine differences in maximum intensities across 

all 15 sampled time points between working and recovery phases for each subject. 

Significantly higher maximum intensities were noted during the working phase for all 

subjects with the exception of subject W (Table 2).

Trend graphs were created to illustrate changes in maximum contrast intensity across the 7-

minute contrast-enhanced sonographic cycle collected in the two phases for each of the 

subjects (Figure 2). Increased maximum intensities during the working phase compared to 

recovery are clearly depicted for all subjects with the exception of subject W, consistent 

with the t test results. Longitudinal assessment of the effects of contrast during the 7 minutes 

of image acquisition indicated a slightly elevated trend in the first 5 minutes of the cycle 

with somewhat reduced/varied intensities in the final 2 minutes.

Discussion

Based on our review of the literature, this is the first pre-clinical study of the use of contrast-

enhanced sonography to detect intraneural vascular flow associated with the median nerve. 

As has been previously stated, chronic external pressure caused by repetitive stress or 

repetitive activities can cause neuropathy involving superficial or deep branches of the 

nerve.3 Therefore, this controlled model was designed to simulate risk factors that contribute 

to median mononeuropathy. Additionally, we have identified an objective measure of 
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vascular intensity and a time series evaluation method that may be useful in future studies 

attempting to document vascularity that could be associated with neuropathy of the median 

nerve. This small cohort helps in formulating a hypothesis that contrast-enhanced 

sonography could help amplify the intraneural vascular activity associated with the 

development of median mononeuropathy.

The first objective of this preclinical experiment was to demonstrate the safety of Definity 

for use in musculoskeletal imaging of intraneural vascular flow. The cumulative dose 

provided to each subject included 0.04 mL of Definity and 0.96 mL of saline, injected over 4 

minutes 15 seconds. This dose was well below amounts indicated in toxicology reports of 

sonographic contrast agent injections in monkeys.16,17 During the working phase, all 

subjects were intubated during contrast agent injections for fear of contrast agent reactions. 

However, all subjects tolerated the injections well and had a quick recovery after sedation; 

therefore, intubation was not used for contrast-enhanced sonography in the recovery phase. 

The lack of any negative effects due to the injection of the contrast agent at this dose for 

musculoskeletal imaging provides promising evidence for translational applications of 

contrast-enhanced sonography in human imaging that is currently not approved in the 

United States.

Next, our work attempted to document changes in vascularity in the early development and 

repair of median mononeuropathy. The injections corresponded uniformly across the 

subjects after extended work exposure and after a similar period of recovery from the 

working task. Quantitative data and trending indicate elevated vascularity within the median 

nerve for the working phase compared to recovery. Although increased numbers were noted 

across all measurement techniques, maximum intensity measurements using PixelFlux 

software seemed to provide the best measure. The Klauser method of counting pixels 

seemed rather subjective, and we had difficulty in obtaining a consensus among the 

researchers in our laboratory (Figure 3). This scoring system, although providing 

information about the incidence of vascularity within the nerve, does not necessarily provide 

enough latitude to detect intensity differences. For example, a nerve that has color in 25 very 

small pixel regions may not, in fact, have more intense overall vascularity than a nerve with 

color appearing in 10 very large pixel regions. In contrast, measuring the intensity of 

vascularity within the ROI using PixelFlux provided more latitude for measuring this 

concept. The use of this method for analyzing contrast-enhanced sonograms is an 

improvement over non–contrast-enhanced Doppler measurements in previous work with a 

larger sample.18,19

The trend graphs provided a time series review of the behavior of the intensity of the 

contrast-enhanced blood flow around the nerve. This set of contrast-enhanced sonographic 

data collected during recovery showed a lower level of enhancement for subjects S, U, X, 

and Y. The recovery data collected for subject W did not differ in a statistically significant 

manner from the working data. Correspondingly, the trend graph also did not show a 

remarkable change. The fact that subject W represented a negative study (low amplification 

of median nerve vascularity) may underscore the variability among subjects and could 

explain the lower sensitivity and specificity demonstrated in human studies.20 This result is 

important to consider, given that even in a fairly well-controlled study, not all subjects have 
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markedly increased intraneural vascularity during the course of developing median 

mononeuropathy. To achieve increased sensitivity and reliable reproducibility when 

translating this process to human studies, further investigation and refinement of 

instrumentation settings and contrast agent dosing are needed.

In addition to differences based on the study phase, we also observed a trend among the 

subjects across the 7-minute cycle. Qualitatively, when watching the cine clips, we noted a 

decrease in contrast perfusion at approximately 5 minutes after the initial injection. We saw 

a similar downward trend in the quantitative maximum intensity trend graphs. This 

downward trend coincides with the last contrast agent booster injection, which was given at 

4 minutes 15 seconds. This decrease in contrast perfusion and decrease in the qualitative 

measure of intensity in the final 2 minutes may be preliminary evidence that contrast agent 

injections do enhance the ability to detect low-flow microvascularity of the vessels within 

the median nerve that could not otherwise be reliably captured with non–contrast-enhanced 

Doppler evaluation.

Further development and validation of contrast-enhanced sonographic methods to study 

kinetics of vessels within the median nerve are necessary. Enhancing the visualization and 

measurement of vascularity will have an important translational impact on distinguishing the 

behavior of vascularity within the normal nerve to document inflammation associated with 

median mononeuropathy. The use of kinetics coupled with our work on the cross-sectional 

area of the layers of the nerve21 may increase the sensitivity for the stages of development of 

median mononeuropathy. Together, documenting the inflammation process and identifying 

median mononeuropathy staging have the potential to lead to the development of specific 

biomarkers for early identification of median mononeuropathy in the acute stages before 

diagnosis as advanced carpal tunnel syndrome.

Limitations

This work was a preclinical study used primarily to demonstrate safety and determine the 

feasibility of contrast-enhanced sonographic measures as a means of describing progressive 

median mononeuropathy due to controlled exposure. Because this study design was pre-

experimental, the threats to internal and external validity do not allow for the results to be 

generalized. These results were also linked to the equipment used and contrast agent that 

provided these experimental results (eg, size of the Definity microspheres). This cohort was 

part of a larger study, and because of a shortage of the contrast product, our work was 

sufficiently delayed, which made the collection of baseline data impossible. Therefore, any 

discussion of the results in this study is only limited to changes in vascularity from a point 

after exposure to a recovery state. The utility of this study is that it (1) provides feasibility 

and trend data for various contrast-enhanced sonographic acquisition and analysis methods 

for use in future studies and (2) gives impetus for developing higher levels of evidence in 

the area of median nerve vascularity.

Conclusions

This study provides preliminary evidence that (1) in a controlled exposure model, a change 

in intraneural vascularity of the median nerve between working and recovery can be 
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observed; (2) this vascular change can be measured using an objective technique that 

quantifies the intensity of vascularity, not merely the incidence, as in the Klauser method; 

and (3) contrast-enhanced sonography may enhance the ability to reliably capture and 

measure low-flow microvascularity. However, accurate velocity measurements need to be 

taken, which would allow for a more accurate correlation with risk factors and symptoms 

associated with compressive neuropathies.
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Figure 1. 
Semiautomatic method for analysis of contrast-enhanced sonographic intensity using the 

PixelFlux Scientific software for one frame capture in a multi-incremental manner. Subject 

X (A) represents a positive case study and subject W (B) a negative case study for 

amplification of median nerve vascularity.
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Figure 2. 
Trend graphs of maximum power Doppler intensities across the 7-minute contrast-enhanced 

sonographic sample for each subject, obtained in the work phase (blue lines) and during 

recovery (green lines).
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Figure 3. 
Contrast-enhanced sonograms captured in a multi-incremental manner and evaluated 

manually by counting pixels according to the Klauser method for assessing contrast 

amplification. Subject X (A) represents a case study with multiple amplified pixels, 

compared to subject W (B), a case study showing low amplification of median nerve 

vascularity.
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Table 1

Individual Subject Average Measurements (SD) for 15 Sampled Contrast-Enhanced Sonograms in Each Phase

Subject Dot Counta Sonographic Gradinga Maximum Intensityb Average Intensityb

Working

 S 13.13 2.73 3.20 (1.44) 0.84 (0.63)

 U 2.22 1.00 1.36 (0.38) 0.59 (0.31)

 W 7.60 1.93 2.93 (1.46) 0.87 (0.72)

 X 23.27 3.00 4.44 (0.88) 2.28 (1.19)

 Y 26.67 3.00 4.73 (0.37) 0.88 (0.80)

Recovery

 S 1.26 0.73 0.52 (0.45) 0.28 (0.10)

 U 1.53 0.73 0.31 (0.25) 0.21 (0.04)

 W 7.93 1.87 2.22 (1.46) 0.71 (0.45)

 X 1.73 0.87 0.45 (0.24) 0.26 (0.06)

 Y 0.80 0.73 0.44 (0.53) 0.26 (0.07)

a
Klauser method.

b
PixelFlux.
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